
PostgreSQL Replicator – easy
way to build a distributed

Postgres database

Irina Sourikova
PHENIX collaboration

Outline

• Why PHENIX had to search for another DB technology
• Options: Objectivity, Oracle, MySQL, Postgres
• Postgres DB
• Postgres Replicator
• Distributed PHENIX File Catalog
• File Catalog API: FROG
• Conclusions

BNL

CC-F
Lund

CC-JVUUNM
SUNYSB

Major PHENIX Computing Sites

LLNL

analysis, simulation,
and reconstruction
of simulated data

CC-J

UNM

WI

CC-F

BNL

simulation farm

off-site analysis

analysis and
reconstruction

50 (300) TB/yr 10 TB/yr

5 TB/yr

10 TB/yr

Large amount of data is moved between BNL and
offsite institutions

Central File Catalog doesn’t scale in
distributed environment

• Because of WAN
latency central File
Catalog was not updated
online during production
at remote sites

• Remote sites maintained
their own catalogs of
local files

Was hard to keep File
Catalogs up-to-date,
required a lot of work

What we were looking for

• Provide write permissions to the sites that
store portions of the data set

Objy: difficulty of PDN negotiation, exposes primary DB to world

WAN latency, single-point-of-failure

What we needed: hybrid solution

Database technology choice

• Objectivity – problems with peer-to-peer
replication

• Oracle was an obvious candidate(but expensive)
• MySQL had only master-slave replication
• PostgreSQL seemed a very attractive DBMS with

several existing projects on peer-to-peer
replication

• SOLUTION: to have central Objy based metadata
catalog and distributed file replica catalog

PostgreSQL

• ACID compliant
• Multi-Version Concurrency Control for concurrent

applications
• Easy to use
• Free
• LISTEN and NOTIFY support message passing

and client notification of an event in the database.
Important for automating data replication

PostgreSQL Replicator

http://pgreplicator.sourceforge.net
• Works on top of Postgres DB
• Partial, peer-to-peer, async replication
• Table level data ownership model
• Table level replicated database set

Distributed PHENIX Catalog

• Distribution includes BNL and Stony Brook
University

• Two sites have common tables that are
synchronized during replica session

• Common tables have Workload Partitioning
data ownership model, that means the table
entries can be updated only by the site-
originator

2003-1-1
09:00:02

22334455/phenix/data45/…/123.rootZZZ.rcf.bnl.gov123.root

/…./123.rootram3.chem.sunysb.edu123.root

/phenix/phnxsink/…HPSSEVENTDATAXXX.prdf

2003-3-8
11:20:03

12345678/phenix/data01/dsts/xyz.dstXXX.rcf.bnl.govxyz.dst

timefsizefilePathhostLFN

Table ‘files’

SB BNL SB BNL

ARGO ARGO

SYNC

Stony Brook BNL

DBadmin DBadminClients Clients

Production

Staging

File Catalog replication

• Synchronization is two-way
• Fault tolerant
• DB replication is partial, only latest updates

are transferred over the network
• That solves scalability problems
• Replication of 20 000 new updates takes

1min

File Catalog API: FROG

• File Replica On Grid
• Translates Logical File Name to Physical File Name
• Shields users from Database implementation
• User code stays the same in different environment – with

or without DB access(important for offsite analysis)

FROG

Postgres Objylocal dirs

GSEARCHPATH = .:/home/irina:PG:OBJY

LFN

PFN

‘Least surprise’ design principle

• FROG has 1 method -
const char * location(const char * lfn)

• If lfn starts with a / , it is considered as an absolute file
path and FROG::location() returns it

• If env GSEARCHPATH is not set, FROG::location()
returns lfn

• If users don’t have DB access, env GSEARCHPATH can
be set accordingly

Plug-in architecture

• To search different databases FROG loads the
corresponding dynamic libraries

• Easy to change database backend(user code not affected)

What do we gain by using FROG?

• No hardwired file paths in the code
• Analysis code still works when files are relocated
• Possible to replicate very popular files
• Extremely useful for NFS load balancing

• Better use of available resources
• Faster analysis

Conclusions

• Postgres Replicator is a free software that allows to build a
distributed database

• This technology allowed PHENIX to distribute File Catalog
and have the following advantages over central FC:
?Reliability(no single point of failure)
?Accessibility(reduced workload, no WAN latency)
?Solved security problems (firewall conduits only between

servers)
?Catalog data is more up-to-date(all sites update the catalog

online)
?Less manpower needed to maintain the catalog

